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Summary:
Maps are needed for a wide range of applications. In the context of mobile robotics, the map
learning problem under uncertainty is often referred to as the simultaneous localization and
mapping problem. In this paper, we aim at exploiting already available information such as
OpenStreetMap data within the SLAM problem. We achieve this by relating the information
about buildings with the perceptions of the robot and generate constraints for the
pose-graph-based formulation of the SLAM problem. In addition to that, we present a way to
select target locations for the robot so that by going there, the robot can expect to reduce it’s own
pose uncertainty. This localizability information is generated directly from Open Street Map data
and supports active localization. We implemented and evaluated our approach using real world
data taken in urban environments. Our experiments suggest that we are able to relate the newly
built maps with information from Open Street Maps with the laser range finder data from the
robot and in this way improve the map quality. The extension to graph-based SLAM provides
better aligned maps and adds only a marginal computational overhead. Furthermore, we illustrate
that the localizability information is useful to evaluate the ability to localize the robot given a
trajectory.

Zusammenfassung: Nahezu alle Navigationsysteme benötigen Karten der Umgebung. Das
gleichzeitige Erstellen und nutzen solchen Karten spiele eine zentrale Rolle in der
Roboternavigation und wird oft als Simultaneous Localization and Mapping oder SLAM
Problem bezeichnet. Nahezu alle gängigen SLAM Systeme ignorieren allerdings
Hintergrundwissen oder Resourcen aus dem Netz. In diesem Papier präsentieren wir ein
Verfahren, welches Daten von OpenStreetMap während dem Kartenbau nutzen kann. Dazu
erweitern wir die klassische Pose-Graph Formulierung des SLAM Problem und integrieren
zusätzliche Abhängigkeiten zwischen Aufnahmeposen und existierendem Kartenmaterial.
Darüber hinaus können wir schätzen, welchen Regionen der Karte sich zur Positionsbestimmung
besonders eignen und somit die Trajektorien des Roboters positiv bzgl. erwarteter
Lokalisierbarkeit bewerten. Wir haben unseren Ansatz auf zwei realen Robotersystemen
implementiert und evaluiert. Wie unsere Experimente zeigen, verbessert unser Verfahren die
resultierenden Karten ohne dabei den Rechenaufwand substanziell zu erhöhen.
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Fig. 1: From left to right: Screenshot from OpenStreetMap; map that we render for alignment;
computed localizability map; resulting robot map.

1 Introduction

Most robot navigation systems require a map of the environment as well as the current pose of
the vehicle in this map. Thus, having an online building procedure for a consistent map of the
robot’s surroundings is one of the essential prerequisites for the reliable robot operation. As errors
in the robot’s pose accumulate over time, building large scale maps from odometry and laser
range information often leads to a drift in the trajectory estimate. GPS information can be used
to compensate for that drift. This works well if a sufficient number of satellites is visible. In
urban environments, however, narrow streets, high buildings and trees can hinder the capabilities
of the receiver and disturb the GPS signals. This may result in a poor positioning performance. In
addition to that, performing loop closures reduces the drift, but it forces the robot to re-visit places
in the environment, e.g. re-entering the same street.

Recently, alternative methods for enhancing the outdoor mapping are gaining attention in the
various communities, such as coupling the information from publicly available maps, like aerial
photographs KÜMMERLE et al. (2011b) or OpenStreetMap (OSM) data with standard localiza-
tion HENTSCHEL & WAGNER (2010) or Simultaneous Localization and Mapping (SLAM) ap-
proaches. We see exploiting such background information as orthogonal to using GPS information
as aligning sensor observations with publicly available maps works typically well in GPS-denied
environments. The ideas of incorporating additional prior information about the environment are
also explored in context of Unmanned Aerial Vehicles (UAV), see (GERKE, 2011) and (UNGER et
al., 2016).

The main contribution of this paper is a novel approach to align the robot’s trajectory to Open-
StreetMap data and to estimate vantage points that are likely to reduce the pose uncertainty of
the robot. We integrate the ability to relate the obtained laser range measurements with the OSM
data into our SLAM framework using pose graphs. This approach uses buildings as landmarks for
SLAM to align the robots trajectory with existing maps. Not all places in an environment allow
for matching the onboard perceptions with the OSM data. In some areas, the building structure
is not distinctive enough for the robot to find an alignment. For example the result of the local-
ization is ambiguous when the robot is located in a ‘corridor’-like environment, e.g. between two
long buildings, see Figure 2(left). In this case, even obtaining ideal measurements, e.g. endpoints
located on the walls, will not improve the localization, since the nearby poses explain the envi-
ronment as well as a query one. To perform the alignment in a better way, we would like to avoid
navigating through the ambiguous regions and prefer the regions with more distinctive structure
like the one in Figure 2(left-middle), where the ideal measurement originated from the query pose
has a low likelihood of being observed from nearby poses. Thus, we also propose a technique that
turns the information from publicly available maps into so-called localizability maps, i.e. maps
that indicate how well the robot is expected to establish the data associations between its own
sensor readings and the OSM information and thus can localize itself.

This papers extends our recent work along two dimensions. First, our previous work, see



Fig. 2: First and second image: uninformative vs. informative pose. In the left image the pose of
the robot (red) is not informative, because by applying the small transformation to the robot’s pose
(blue) the virtual measurement explains the surrounding as well as from the previous pose, whereas
in the second image the pose of the robot (red) is informative, since the transformations of the pose
(blue) decreases the likelihood of measurement. Third and forth image: An example correction of
the robot’s pose based on the aligning of the scan (blue) to the buildings in the map (black); left
image shows the robot pose before correction and right afterwards.

VYSOTSKA & STACHNISS (2016), only addresses the registration, is passive and does not evaluate
the localizability of a place. The previous paper focuses on alignment procedure and presents
results on multiple different trajectories. In contrast to that, this paper additionally describes in
detail the process of creating the localizability map as well as the extended experimental results.

2 Related Work

The first work in robotics that addressed SLAM through least squares was the work of LU & MIL-
IOS (1997). Subsequently, GUTMANN & KONOLIGE (2000) focused on means for constructing
pose-graphs and for detecting loop closures. Over the last 15 years, a large number of different ap-
proaches to graph-based SLAM have been proposed, for an overview see: (BAILEY & DURRANT-
WHYTE, 2006a,b; GRISETTI et al., 2010a; SALAS-MORENO et al., 2013; STACHNISS, In Press).

For example, the work by KONOLIGE et al. (2010) describes a pose-graph implementation
for building the linearized system in an efficient way. Solving the linear system of equations
leads to optimizing the robot poses and thus map estimates. OLSON et al. (2006) investigates the
use of stochastic gradient descent and GRISETTI et al. (2009) proposed an extension of Olson’s
approach that uses a tree parametrization of the nodes in 2D and 3D. Thrun’s GraphSLAM ap-
proach (THRUN & MONTEMERLO, 2006) applies variable elimination techniques to reduce the
dimensionality of the optimization problem as well as hierarchical techniques. Most SLAM ap-
proaches assume Gaussian errors in the constraints. This renders them sensitive to data association
outliers. A number of approaches has been proposed to overcome this problem. For example, the
approach of SÜNDERHAUF & PROTZEL (2012) scales the effect of potential outlier constraints
while AGARWAL et al. (2013) proposed dynamic covariance scaling as an alternative scaling ap-
proach that does not increase the number of variables that need to be optimized. RRR (Realizing,
Reversing, Recovering) by LATIF et al. (2012) tries to identify outliers by searching for the set of
edges that are consistent with each other. It then rejects potentially wrong constraints.

Recently, several localization approaches were proposed that use the information from Open-
StreetMap (HAKLAY & WEBER, 2008) to improve robot localization. Most of them incorporate
this information into the observation model of the Monte Carlo localization (MCL). For example,
HENTSCHEL et al. (2008) represent buildings as 2D line features. This line map is then used to
calculate the expected range measurement at a certain robot’s locations and combines MCL with
a form of Kalman filtering. In our work, we also use the information about buildings, but inte-
grate the correspondences through an ICP (Iterative Closest Point)-based matching procedure into
a graph-based SLAM framework. Another approach, which is proposed by FLOROS et al. (2013),
uses chamfer matching to align robot’s trajectory with the road network extracted from publicly



available maps. Each particle in MCL is weighted according to the reported chamfer matching
cost. In contrast to that, we select building information as this enables our system to deviate from
the exact structure of the road network. Also, typically the metrical information about the road
size is missing. Moreover, buildings are easier to detect in 2D range scans then the road sur-
face. RUCHTI et al. (2015) also use the information about the road network. Instead of relying
on visual odometry as FLOROS et al. (2013), they classify the 3D laser scans into road/non-road
surfaces and the classification result is incorporated into the weight of the particles in the Monte
Carlo localization. In contrast to that, our work incorporates building information obtained from
OpenStreetMap into graph-based SLAM as additional edge constraints. An approach by PINK et
al. (2009) generates features like markings of the street lanes from aerial images, matches them
to the features extracted from the camera mounted in the car, and uses this information in visual
navigation framework. In our work, we use a laser scanner and thus are not bounded to follow the
road network. Similar to the other approaches, BRUBAKER et al. (2016) also consider the road
network from the OpenStreetMap and a camera pair to perform localization.

Another approach to maintain the global consistency of the robot’s maps was proposed by
KÜMMERLE et al. (2011b). The consistency is achieved by augmenting the pose-graph formula-
tion with additional constraints that come from the matching the robot’s perceptions to the infor-
mation from the aerial images. The aerial images are transformed into a line map using the Canny
edge detector, whereas we render the map directly from the OSM information. Additionally, the
authors use a variant of Monte-Carlo localization for localizing the robot within the line-map and
then optimize the robot poses using a pose-graph SLAM formulation. In contrast to that, we use
the information about the building locations directly from the publicly available data and incor-
porate this information directly into the pose-graph formulation without deploying Monte-Carlo
sampling techniques.

Computing likelihood maps for localization is a well studied problem, for example in the field
of active vision. The main focus here is to find the suitable vantage points for the camera for better
object detection or to enhance the visual SLAM algorithms (BAJCSY, 1988; ALOIMONOS et al.,
1988; CHEN et al., 2011; KIM & EUSTICE, 2014). In our work, we are interested in the similar
goal of finding regions where good vantage points are located, but our primary sensor setup is
a laser scanner. In the robotics community the problem of estimating the localization likelihood
maps or localizability maps has also been studied in context of Teach and Repeat paradigm. For
example, FURGALE & BARFOOT (2010) compute a teach corridor within which the robot can
localize well in a repeat phase. DEQUAIRE et al. (2016) deploy Gaussian Processes to predict
the localization envelope, the region around the taught trajectory, where the robot obtains reliable
visual features for localization in a repeat phase. The authors use robust visual features as well as
local path curvature to make the predictions. VELEZ et al. (2011) propose an approach to improve
the object detections by planning the navigation in that way that allows the detector to be certain
about the object. In the vicinity of each detectable object, they compute a likelihood field that
indicates locations where reliable measurements can be taken. In our work we do not rely on any
pre-trained detectors. The work with which our approach shares most similarity is the work of
ROY et al. (1998). In this work they present an approach for navigating a robot, called coastal
navigation, which generates the trajectories for the mobile robot that reduce the likelihood of
localization errors. They estimate the likelihood of a point in the map as the amount of information
content. It is computed as the difference between the expected entropy of the robot’s pose given
a sensor measurement and the entropy of the prior belief about the pose. The more information
the cell in the map contains, the higher the likelihood. In our case, we compute the eigenvalues of
the covariance estimate of the robot’s pose and consequently, the smaller the selected eigenvalue,
the smaller the uncertainty and the higher the likelihood will be. For the computation, ROY et al.
(1998) assume to have a map of the environment constructed by a robot and the prior probability
distribution about the robot’s position. In our approach, we also consider to have a map of the
environment, but in the form of a coarse map, rendered from the OpenStreetMap data.



3 Graph-Based SLAM Exploiting Existing Maps as Background
Knowledge

The optimization step in graph-based SLAM systems aims at finding the configuration of the nodes
that minimizes the error induced by observations. We consider pose-graphs, i.e., SLAM graphs in
which the nodes correspond to robot poses. In general the pose of the robot consists of the location
of the robot and its orientation. In this paper, the pose representation of the robot’s pose is a 3
dimensional vector, consisting of two translational and one rotational components. This yields
a state vector X = (x1, . . . , xn)> where xi is the pose of node i. The error function eij(X)
for a single constraint between the nodes i and j is often the difference between an expected
measurement f(xi, xj) (relative pose between nodes i and j) and the obtained measurement zij :

eij(X) = eij(xi, xj) = f(xi, xj)− zij . (1)

Note that alternative representations can be used to avoid problems resulting from singularities
in the angular components, see (GRISETTI et al., 2010b) for details. As the error functions are
typically non-linear, we linearize eij(X) around the current best estimate

eij(X + ∆X) ' eij(X) + Jij∆X. (2)

Here, Jij is the Jacobian of the non-linear error function computed in the current state. Thus, the
resulting minimization problem turns into

X∗ = argmin
X

∑
ij

eij(X)>Λijeij(X), (3)

where Λij is the information matrix, also referred to as weight matrix associated to a constraint.
Up to this point, this is the standard formulation of pose-graph SLAM and Eq. (3) can be solved
as a least squares problem. To reduce the impact of the outliers, we use a robust kernel func-
tion, namely dynamic covariance scaling as proposed by AGARWAL et al. (2013). This approach
rescales the error function eij(X) depending on its magnitude to reweight the impact of potential
outliers. This is, up to a parameter, equivalent to using a Geman-McClure kernel. This scheme
for down weighting the impact of outliers is also often referred to as robust estimation, see for an
overview (FÖRSTNER & WROBEL, 2016).

3.1 Error Function Exploiting Existing Maps

In order to incorporate additional knowledge into the optimization process and relate the pose-
graph to existing data, we analogously extend the error function to

X∗ = argmin
X

∑
ij

eij(X)>Λijeij(X) + Fmap(X), (4)

where Fmap(X) is the error introduced by the mismatch between the robot’s observation and the
map information. Analogous to pose-pose constraints, we split up the component Fmap(X) into
individual constraints between robot poses and the OpenStreetMap information:

Fmap(X) =
∑
i

emap
i (X)>Λie

map
i (X). (5)

The key elements in Eq. (5) are the error function emap
i (X) and corresponding information or

weight matrix Λi. The remainder of this section describes how to define such an error function
emap
i (X) and respective information matrix Λi. Intuitively, the error function adds an additional

constraint to the graph that anchors a pose of the robot to a specific location in the map. The key



Fig. 3: Left and second image: Robots used in our experiments: robot equipped with Velodyne
VLP-16 laser scanner mounted parallel to the ground and a Velodyne HDL-32E mounted on the
head of the Obelix robot. Third image: An example of a localizability map. The darker the regions
the bigger the likelihood to obtain in informative measurement. The buildings are marked in blue.
Right: The total error of transforming virtual scan w.r.t the pose xi depends on the distances from
the measurement endpoints zj to corresponding closest points in the buildings cj .

challenge here is to make the correct data association between the map and the robot’s own sensor
readings, obtained from the pose stored in the node of the pose-graph. Once this data association
is solved and the correct coordinate transformations between the robot’s poses and the map are
computed, least squares error minimization will provide us with the global alignment.

To make the data association between the map and the robot’s poses, we use the building
information in the map and the data from a 2D or 3D laser range finder installed on the robot.
When aligning laser range data with the building information from OSM, a central challenge is
that the laser scanner observes a large number of objects in the scene that are not stored in the
map. Examples for such objects, which are not present in the publicly available map, are trees,
cars or pedestrians. In contrast to most other approaches that perform localization on OSM data,
we choose buildings as our features to make the data association and to compute the alignment.
The majority of approaches rely on the road network to localize the robot. This is perfectly fine
for cars or robots moving on the roads, but often limits the application to robots that operate on
sidewalks, foot paths, or in pedestrian zones and do not follow the road network, as no good data
association between the trajectory and the road network can be found in such cases.

3.2 Error Function Exploiting Building Information for Robots Equipped with
Laser Range Scanners

In our work, we use the information about the buildings’ geo-locations rather than a road network
as for example done by RUCHTI et al. (2015) to enable the robot to take paths independently from
the road network. We obtain the building information directly from OpenStreetMap, which can be
downloaded in form of an XML-file. Inside this file, the individual buildings are stored as separate
nodes. Each node is a closed polygon describing the geo-referenced walls of the building, which
directly yields a map of lines that shows the walls of the buildings in the environment; see the
black polygons in the two rightmost images of Figure 2 for an example. A laser scanner typically
provides the scan of the environment covering a large number of objects that are not buildings and
does so at a comparably high level of detail. This may hinder the matching procedure to make the
correct data association between map and laser scan. Therefore, we filter the range scans so that
most of the non-building objects are removed. We investigated several techniques and in the end
opted for an unsupervised approach that performs filtering based on line extraction. It does not
require manually labeled training data and can be executed efficiently. We employ the Douglas-
Peuker algorithm for converting the raw 2D range scan into a polyline. We convert the polyline
into a set of potentially disconnected lines based on two parameters: the length of a line and the
number of laser end points assigned to each line. The problem of detecting building structures has



also been investigated in the context of reconstructing the 3D structure. For example FISCHER et
al. (1998) use generic models to extract 3D buildings from the aerial images. HUBER et al. (2003)
fuse the LIDAR data with aerial imagery and apply polyhedral models to reconstruct the buildings.
We, on the other hand, detect buildings in the single 2D laser scan, not taking into account the
information from the maps.

Since our aim is to incorporate the knowledge about the environment from the map into the
graph optimization procedure to refine the robot’s trajectory, the error function for this constraint
should reflect the misalignment between the current robot’s pose and the map. Intuitively, the
bigger is the misalignment between the scan and the buildings in the map, the bigger the error
should be. To estimate the (mis-)alignment, we use the Iterative Closest Point (ICP) (BESL &
MCKAY, 1992) algorithm to match the current laser scan and the map of building. For finding the
correspondences in ICP, standard nearest neighbor data association is applied.

More precisely, the error term emap
i (xi) is defined based on the difference between the current

robot’s pose xi and the pose x̂i, computed by aligning the scan in the building map. The 2D state
of the robot xi consists of translational ti and rotational θi components, i.e., forms an element in
SE(2), special euclidean group for two dimensions. The same holds for the state x̂i. Thus, the
error function and its Jacobian turns into:

emap
i (xi) =

(
R̂>i (ti − t̂i)
θi − θ̂i

)
and Ji =

∂emap(xi)

∂xi
=

(
R̂>i 0
0 1

)
. (6)

with R̂i being the standard 2D rotation matrix corresponding to the angle θ̂i. For the ICP algorithm
to operate reliably, we need a good initial guess. In our setup, the initial guess is achieved by
either manually specifying the first pose of the robot on the map or by using an initial guess from
a consumer GPS with an accuracy of a few meters. The initial guess of all successive poses is then
automatically obtained from the odometry constraints of the graph or by incremental scan to scan
alignment typically used in graph-based SLAM with laser range finders.

Finally, we have to compute the weight matrix Λi of a map constraint, which is the inverse of
the covariance matrix of the ICP alignment, i.e., Λi = (ΣICP

i )−1. We compute the covariance ma-
trix ΣICP

i from the ICP result by using the Hessian as described by BENGTSSON & BAERVELDT
(2003). This assumes the error function eICP used in the ICP algorithm to be quadratic near the
optimal solution, i.e.,

eICP =
∑
k

‖Tpk − qk‖2 , (7)

where pk is a point from a laser scanner that belongs to the detected buildings and qk is a cor-
responding closest point in the buildings taken from the publicly available map. The optimal
transformation T that the ICP algorithm reports is found by minimizing the function eICP with
the covariance matrix of T as

ΣICP
i = cov(T ) = 2σ2

(
∂2

∂T 2
eICP

)−1
= 2σ2H−1icp , (8)

where Hicp is the Hessian matrix of eICP and σ2 is the variance factor.
So far, we described how to obtain the error function for 2D range data such as a horizontally

mounted 3D range scanner, but it works analoguously on data from a 3D laser scanner. In this
paper, we use 2D and 3D range data. In case of 3D data such as the one coming from a Velodyne
scanner, for every individual scan we construct a 3D point cloud and generate new virtual 2D
laser scans given the planar surfaces in the cloud. We basically follow the approach proposed
by WULF et al. (2004), which is also used by BOGOSLAVSKYI et al. (2016) and HENTSCHEL et



al. (2008).

3.3 Error Minimization

Given the error function emap
i with corresponding information matrix Λmap

i and Jacobian Ji,
we use Levenberg-Marquardt optimization to solve the problem given in Eq. (3). This leads to
iteratively solving a linear system of the form

(H + λI)∆X∗ = −b, (9)

with

H =
∑
ij

J>ijΛijJij +
∑
i

J>i ΛiJi and b =
∑
ij

J>ijΛijeij +
∑
i

J>i Λie
map
i . (10)

H and b are the key elements and are computed from the linearized error functions and λ is the
damping factor used in the Levenberg-Marquardt. The term ∆X∗ refers to the increments that are
added to the graph configuration in order to minimize our error function in the current iteration.
In our implementation, we use the g2o framework by KÜMMERLE et al. (2011a) to conduct the
minimization with dynamic covariance scaling by AGARWAL et al. (2013). This yields an update
of the graph configuration in every iteration of the form:

X ← X + ∆X∗. (11)

We do not execute this procedure in a batch fashion but selected the incremental option of the
g2o optimizer, which allows to optimize the trajectory in chunks. In our current implementation,
we trigger an update whenever the robot drove for 25 m. This has two advantages. First, the
data are available already online during mapping. Second, the correction of the trajectory up to a
point in time t1 will simplify the data association for the ICP step for subsequent matching with
t > t1 and, thus, has the potential to provide a better alignment. As a result of that, we obtain an
optimized pose-graph that is aligned with the provided map.

4 Estimating Localizability for Actively Reducing Pose Uncertainty

By using publicly available maps such as OpenStreetMap we are able to better align the robot’s tra-
jectory and, hence, the robot’s own map to the surrounding environment. This approach, however,
relies on the observations that the robot obtains, which in turn depend on the local surroundings
of the robot. The ability to match the local perceptions to the OSM data depends on the visibility
of buildings and the local geometry or arrangement of the buildings. The goal of this section is
to describe an approach to estimate the ability of the robot to align is perception with the OSM
data before moving there. Thus, we aim at estimating a visibility map from the OSM data and
selecting the regions that are expected to provide good vantage points that support the alignment.
A measurement will be informative for the robot if (i) the buildings can be detected in the indi-
vidual scans and (ii) the observed structure allows for reducing robot’s pose uncertainty. Thus, we
present a method that estimates the regions in the environment, where the informative laser scans
are likely to be obtained, given the information from publicly available maps.

To reason about the informativeness of a particular pose on the map, we need to specify the
function, which measures the likelihood of obtaining a certain laser scan given a pose. For our
sensor model, we assume that individual beams zj in the laser scan are independent and that the
measurement noise for each beam is Gaussian, i.e., p(zj) ∼ N (cj , σl), where cj are the closest
points in the buildings that correspond to the individual laser beam endpoints zj , for visualization
see Figure 3 (right).



Fig. 4: Example of aligning the robot’s trajectory with the buildings on the map and as a result of it
improved loop closure, which also leads to more consistent robot map. The OSM map is rendered
with 0.3 meters per pixel resolution.

Our goal is to estimate for every potential robot pose the associated uncertainty of the pose
estimate based on the visibility of the building structures in the scene. We start with simulating
an ideal (virtual) laser scan at every potential pose xi. This measurement assumes that only the
building from OSM data exist in the environment. This simulated scan is generated by performing
a ray-cast operation in the maps from OSM. We then estimate how well this ideal measurement
matches to the OSM maps under pose uncertainty. We estimate this by applying small perturba-
tions to the robot’s pose in x, y and θ. By doing so, we form a set S of potentially similar pose
configurations xj and estimate the corresponding errors which arise by comparing the a virtual
scan to the map in the new robot configuration. We estimate an error for a pose configuration
as a sum of squared errors e(zj) of individual beams of the scan. We then perform an approx-
imation taking into account our assumption about the probability distribution of an individual
beam. We approximate the probability of taking a virtual measurement in the configuration xj as
p(xj) ∼ exp (−

∑
e(zj)

2Nσ2
l

), where N is size of the scan and e(zj) is a squared distance between
measurement endpoint zj and closest building in the map. In other words, by applying these ac-
tions, we approximate the unknown probability distribution about the robot’s pose. Having the
samples from a probability distribution, we obtain the covariance matrix, i.e. the uncertainty of
the pose, as follows:

cov(xi) =
∑
xj∈S

p(xj) (xj − qxi)(xj − qxi)
> (12)

where qxi corresponds to the coordinates of the query pose.

However, to be able to reason about the informativeness of the different regions in a more
quantitative way, we compute the eigenvalues/eigenvectors of the respective covariance matrices
and therefore obtain the information in which direction we are most uncertain about the pose.
Afterwards, we update our localizability maps with the biggest eigenvalue for every pose. This
ensures that we take into account the value of the biggest uncertainty across all dimensions. As
a result, the regions in the map with smaller values correspond to the places where the largest
uncertainty over individual dimensions is smaller in comparison to other regions or, in other words,
the regions where the informative measurements are more likely, see Figure 3 for visualization.



Fig. 5: Left: overlayed trajectory before the optimization. Right: trajectory after optimization. Mid-
dle: Zoom in parts of the trajectory; upper row: case of corrected misalignment at the beginning of
the trajectory; bottom: fixed misalignment at the end of the trajectory; center: successfully closed
loop.

5 Experiments

The evaluation is designed to illustrate the performance of our approach and to support the follow-
ing claims made in this paper. These key claims are that (i) we improve the map alignment with
our approach, (ii) can handle situations in which the map data are partially outdated, for exam-
ple if buildings have been demolished or new buildings have been built, (iii) all operations yield
only a small computational overhead compared to a standard graph-based SLAM system, and (iv)
the localizability maps provide information about the ability of the platform to localize along a
given trajectory. We performed our experiments in outdoor urban environments using the odom-
etry from two robots, Husky A200 and Obelix, both are depicted in Figure 3 and are equipped
with Velodyne VLP-16 and Velodyne HDL-32E laser scanners respectively. For detecting lines in
laser scans, we used Douglas-Peuker algorithm and maintain only lines with a length of at least
5 m containing at least 100 laser end points (for a scanner with a 0.25◦ resolution). This clearly
eliminates also end-points belonging to walls, but overall, it keeps the number of false-positives
small — which is more important for us in order to obtain a robust alignment between laser scan
and map.

5.1 SLAM Exploiting OpenStreetMap Data

The first set of experiments is designed to illustrate that we use the information from publicly
available maps to locate the robot within these maps. By considering the individual laser scans
obtained by the robot within the alignment procedure, we even have the possibility to find loop
closures that are partially missed by the pose-graph SLAM otherwise. Figure 4 depicts a trajectory
of the robot overlayed on the map when using traditional 2D graph-based optimization (red) with-
out considering map information and when incorporating the map structure into the optimization
process (green). The map in this case is rendered with 0.3m per pixel resolution and covers the
area of 250×300m. As can be seen, not only the robot’s own map is better aligned with the struc-
ture of the environment, but also the loop closure was correctly detected due to the aligning laser
scans to the buildings. To provide a more quantitative evaluation, we compute the error for the
final pose of the robot, as a distance between the optimized pose and manually specified ground
truth position. The error of the final pose without map information is about 5m, whereas using the
map priors lead to an error for the final pose of about 1m. Figure 5 represents another example
of the robot’s trajectory, here using a 3D Velodyne data, which spans over a significantly larger



Fig. 6: Enabling / Disabling robust kernel function (DCS). Left: optimization using DCS. Middle:
optimization without robust kernel functions. Right: Zoomed views of the map inconsistencies our
system can deal with. Light blue: detected buildings
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Fig. 7: Planned trajectories. Left: Robot starts in a location which supports an alignment well
(setup 1). Middle: Robot starts in a location with low likelihood of being able to compute the right
data association between OSM information and its sensor readings (setup 2). Trajectories recorded
in Freiburg. Trajectory 1 goes through the likely regions more often than trajectory 2.

area than the previous example. For this experiment the map represents the area of size 500×500
meters and thus is rendered with 0.5 meters per pixel resolution. In Figure 5, only the laser end
points that do not belong to the ground plane are plotted. As can be seen, the map produced by
the robot is filled with substantial clutter in the environment, which makes the aligning procedure
more challenging. Nevertheless, our approach is able to fix the misalignments that come from the
inaccuracy of the initial position, see Figure 5 middle column upper and bottom image, as well as
to find loop closures missed by the pure pose-graph approach, see Figure 5 middle center. Using
the same definition of the localization error as for the previous experiment, the error of the last
pose using pure pose-graph formulation is 22 meters, whereas with OSM information is 0.5m.

5.2 Map Inconsistencies

The second experiment is designed to show that our approach is able to deal with a certain amount
of map inconsistencies. Such inconsistencies result from different sources, for example wrongly
mapped buildings, a demolished building that is still present in the map or a building that was
built after the time of the map creation. The two examples for inconsistencies shown in Figure 6
are real inconsistencies in OSM data and not artificially simulated. As we take the matching-
dependent uncertainty into account, the information about the inconsistencies is incorporated into



Tab. 1: Timing results for processing the whole dataset (full) and processing a chunk (per chunk)
of the dataset after driving for 25m; dist - length of the trajectory; pose-graph - processing using
standard pose-graph formulation only, OSM - processing time needed to optimize additional edges
introduced by OSM constraint.

full per chunk
dist pose-graph osm pose-graph osm

dataset 1 168 m 9.89 s 0.9 s 1.75 s 0.16 s
dataset 2 336.6 m 62 s 0.83 s 5.52 s 0.074 s
dataset 3 579.6 m 41.5 s 4.93 s 2.14 s 0.25 s
dataset 4 1040 m 86 s 4.1 s 2.48 s 0.11 s

the optimization process as well. For this experiment we used the same trajectory as for the
previous experiment. Figure 6 (third column) depicts two examples of the map inconsistencies
that are successfully handled by our approach. The upper image depicts a situation in which the
building is visible in the scan and not present in the map and the image in the bottom shows a case
where the building is wrongly mapped (building in the map is too small). Our system deals with
inconsistencies through the use of a robust kernel function. Figure 6 (middle) shows the effect of
disabling the robust kernel function. As can be seen, the robot map gets distorted near the wrongly
mapped buildings, corresponding places are marked with circles.

5.3 Execution Time

In this experiment, we show that our approach adds only a small computational overhead to the
simultaneous localization and mapping process. We ran our algorithm on different datasets with
various size and complexity and summarize the runtime results in the Table 1. The datasets are
obtained with the robot setup specified before, namely using Husky A200 with Velodyne VLP-16
or Hokuyo laser scanners. As can be seen, the time needed to process additional map knowl-
edge (OSM, 4th and 6th column) is almost negligible in comparison to the time needed for the
pose graph SLAM (pose-graph, 2nd and 5th column). This means that we integrated our extension
into the optimization procedure without adding a significant computational overhead.

5.4 Active Localization

The last set of experiments is designed to show that the localizability maps provide information
about the ability of the robot to reduce its pose uncertainty if obtaining scans at given locations
in the map. To show this, we initialized the robot’s believe with a pose uncertainty of up to 5 m
and 20◦. Then, the robot had to select a target location within a 100 m range and to update the
believe about its own pose based on the measurements acquired on the way. Figure 7 shows
this experiment for two initial locations. In one place, the robot localizes already well given
its initial pose (left image) while in the other case, the initial pose does not offer good features
for localization (right). For each location, we sample possible target locations and evaluated the
ability of the robot to improve its pose estimate while approaching the sampled locations. Several
of the selected trajectories end in the likely regions (setup 1 the trajectories 1, 2, 5, 6; setup 2 the
trajectories 2, 3), whereas others are located in unlikely regions (setup 1: 3, 4 and setup 2: 1, 4,
5).

We have recorded the individual trajectories separately with our robot in Bonn and measured
the ground truth locations at the end of each trajectory. Thus, we are able to compute the localiza-
tion error as the absolute distance between mean estimate and true location. For more quantitative
results, we repeated this experiment for randomly sampled starting locations in an area of 5 m and



Tab. 2: The distribution of the localization errors for the planned trajectories after the execution.

Endpoint Localization error, %
region Trajectory decreased increased diverged

se
tu

p
1 likely

1 94 0 6
2 100 0 0
5 86 0 14
6 98 2 0

¬likely 3 84 4 12
4 0 94 6

se
tu

p
2

likely 3 42 4 54
2 100 0 0

¬likely
1 0 100 0
5 0 84 16
4 0 100 0
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Fig. 8: Localization error distribution for the setup 1 for the trajectory 2 with the endpoint in likely
region (left) and for the trajectory 3 with the endpoint in unlikely region (2nd). Localization error
distribution for the setup 2 for the trajectory 2 with the endpoint in likely region (3rd) and for the
trajectory 1 with the endpoint in unlikely region (right).

20◦ in orientation. The results are summarized in the Table 2. The table depicts the number of
runs in which the the localization errors decreased, increased or even diverged (error larger than
20 m). As can be seen, trajectories that lead through or end in likely regions result in a better local-
ization on average, independent from the starting pose. For the trajectories that lead through the
likely regions (setup 1: 1, 2, 5, 6 and setup 2: 2, 3) the localization error is reduced in 86− 100%
of the cases, whereas for the trajectories that prefer unlikely regions (setup 1: 3, 4 and setup 2:
1, 5, 4) the localization error mostly increases. Additionally, the need of navigating through the
likely regions becomes more important if the starting robot pose lies in the unlikely region as in
setup 2. If the robot starts in a region that supports localization (and thus it is well localized), the
gain of the localizability maps is obviously limited (setup 1: 3). Figure 8 shows the distribution
of the localization error for setups 1 and 2 respectively. As can be seen for the trajectories in the
likely regions (left images) the error is less than 5 m, i.e. less than the original pose uncertainty.
However, the trajectories from the unlikely regions (right images) may result in the decrease of
the localization error as in Figure 8 (left) but also in an increase as for example in Figure 8 (right).

The last experiment is designed to show that trajectories that lead through likely regions in
the localizability map lead more often to a decreased localization error than the trajectories that
that lead through less likely regions. To illustrate this, we recorded the trajectories depicted in the
Figure 7 (right). We recorded the data using the robot Obelix equipped with a Velodyne HDL-32E
in Freiburg. The area depicted in Figure 7 (right) and Figure 9 is approximately 350 × 320m.
The first trajectory passes through the likely regions and leads to a decrease in the localization
error more often than the second trajectory on the right, which leads through regions that do not
support localization that well, see Figure 9. We would like to point out that the start and end
points in this experiment were selected manually so that they either lead trough likely regions in
the localizability map or not. Thus, we investigate the relevance of the proposed localizability
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Fig. 9: First column: Obtained robot maps after traveling along the paths depicted in Figure 7(right).
Right column: Corresponding distribution of the localization errors, when having uncertainty in the
initial pose.

information on the resulting localization performance of the robot traveling along a path and not
the performance of a specific planning or target point selection algorithm. Incorporating a planning
and navigation system that automatically use the localizability maps is a more involved problem
and beyond the scope of this paper.

6 Conclusion

In this paper, we presented a novel approach to improve the quality of maps built with mobile
robots by exploiting information from publicly available maps such as Open Street Map data. Our
approach seeks to find an alignment between the laser scanner data recorded in the mobile platform
and the building information from OpenStreetMap data. In addition to that, we estimate the ability
of the robot to localize itself in a given region of the map by computing a so-called localizability
map. As we have illustrated through a large set of real world experiments, the exploitation of OSM
data improves the map alignment process and provides relevant information about the ability of
the robot to localize itself in certain locations.
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KÜMMERLE, R., GRISETTI, G., STRASDAT, H., KONOLIGE, K. & BURGARD, W., 2011a: g2o: A general
framework for graph optimization. – Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
3607 – 3613.
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